首页 > 高中 > 高二数学必修四单元复习难点突破

高二数学必修四单元复习难点突破

时间:2020-09-16 00:00:15

  高二数学必修四单元复习难点突破
  一、周期函数
  1.周期函数的定义:
  对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.T叫做这个函数的周期.
  2.最小正周期:
  如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
  1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.
  2.求解涉及三角函数的值域(最值)的题目一般常用以下方法:
  (1)、利用sin x、cos x的值域;
  (2)、形式复杂的函数应化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));
  (3)换元法:把sin x或cos x看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)).
  二、正弦函数、余弦函数、正切函数的图象和性质
  1.求三角函数的单调区间时,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式,再根据三角函数的单调区间,求出x所在的区间.应特别注意,考虑问题应在函数的定义域内.
  2.周期性是函数的整体性质,要求对于函数整个定义域内的每一个x值都满足f(x+T)=f(x),其中T是不为零的常数.如果只有个别的x值满足f(x+T)=f(x),或找到哪怕只有一个x值不满足f(x+T)=f(x),都不能说T是函数f(x)的周期.
  三角函数的奇偶性
  1.三角函数的奇偶性的判断技巧
  首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断.
  2.求三角函数周期的方法
  (1)、利用周期函数的定义;
  (2)、利用公式:y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为|ω|(2π),y=tan(ωx+φ)的最小正周期为|ω|(π);
  (3)、利用图象.
  三角恒等变换
  (1)两角和与差的三角函数公式
  ① 会用向量的数量积推导出两角差的余弦公式.
  ② 会用两角差的余弦公式导出两角差的正弦、正切公式.
  ③ 会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.
  (2)简单的三角恒等变换
  能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).

上一篇:高二数学上册第三单元必修一知识点归纳

下一篇:人教版高二年级数学试题

相关阅读
最新更新