首页 > 高中 > 人教版高二数学下册复习学案

人教版高二数学下册复习学案

时间:2020-09-11 21:51:10

  三角函数定义

  把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与X轴重合,顶点放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。这点的坐标为(x,y)。

  sin(θ)=y;

  cos(θ)=x;

  tan(θ)=y/x;

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-cosAsinB

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  tan2A=2tanA/(1-tan2A)

  Sin2A=2SinACosA

  Cos2A=Cos^2A--Sin2A

  =2Cos2A—1

  =1—2sin^2A

  三倍角公式

  sin3A=3sinA-4(sinA)3;

  cos3A=4(cosA)3-3cosA

  tan3a=tanatan(π/3+a)tan(π/3-a)

  半角公式

  sin(A/2)=√{(1--cosA)/2}

  cos(A/2)=√{(1+cosA)/2}

  tan(A/2)=√{(1--cosA)/(1+cosA)}

  cot(A/2)=√{(1+cosA)/(1-cosA)}?

  tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)

  和差化积

  sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

  sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

  cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

  cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

  tanA+tanB=sin(A+B)/cosAcosB

  积化和差

  sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

  cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

  sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

  cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

  诱导公式

  sin(-a)=-sin(a)

  cos(-a)=cos(a)

  sin(π/2-a)=cos(a)

  cos(π/2-a)=sin(a)

  sin(π/2+a)=cos(a)

  cos(π/2+a)=-sin(a)

  sin(π-a)=sin(a)

  cos(π-a)=-cos(a)

  sin(π+a)=-sin(a)

  cos(π+a)=-cos(a)

  tgA=tanA=sinA/cosA

  万能公式

  sin(a)=[2tan(a/2)]/{1+[tan(a/2)]2}

  cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]2}

  tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}

  其它公式

  asin(a)+bcos(a)=[√(a2+b2)]*sin(a+c)[其中,tan(c)=b/a]

  asin(a)-bcos(a)=[√(a2+b2)]*cos(a-c)[其中,tan(c)=a/b]

  1+sin(a)=[sin(a/2)+cos(a/2)]2;

  1-sin(a)=[sin(a/2)-cos(a/2)]2;

  其他非重点三角函数

  csc(a)=1/sin(a)

  sec(a)=1/cos(a)

  双曲函数

  sinh(a)=[e^a-e^(-a)]/2

  cosh(a)=[e^a+e^(-a)]/2

  tgh(a)=sinh(a)/cosh(a)

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα

  cos(2kπ+α)=cosα

  tan(2kπ+α)=tanα

  cot(2kπ+α)=cotα

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α与-α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  Asin(ωt+θ)+Bsin(ωt+φ)=

  √{(A2+B2+2ABcos(θ-φ)}sin{ωt+arcsin[(Asinθ+Bsinφ)/√{A2+B2;+2ABcos(θ-φ)}}

  √表示根号,包括{……}中的内容

  练习题:

  1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是()

  2.已知角α和角β的终边关于直线y=x对称,且β=-,则sinα=()

  3.已知角α的终边与单位圆交于点,则tanα=()

上一篇:2021小学五年级语文上册检测卷

下一篇:2020高二数学暑假作业练习题

相关阅读
最新更新