首页 > 高中 > 高二数学下学期知识点复习

高二数学下学期知识点复习

时间:2020-09-11 21:59:00
高二数学下学期知识点复习

  1.圆的定义

  平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

  2.圆的方程

  (1)标准方程,圆心,半径为r;

  (2)一般方程

  当时,方程表示圆,此时圆心为,半径为

  当时,表示一个点;当时,方程不表示任何图形。

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

  3.直线与圆的位置关系

  直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线,圆,圆心到l的距离为,则有

  (2)过圆外一点的切线:

  ①k不存在,验证是否成立

  ②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

  (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

  4.圆与圆的位置关系

  通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  设圆

  两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  当时两圆外离,此时有公切线四条;

  当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

  当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

  当时,两圆内切,连心线经过切点,只有一条公切线;

  当时,两圆内含;当时,为同心圆。

  注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

  圆的辅助线一般为连圆心与切线或者连圆心与弦中点

  

上一篇:英语完形填空的解题技巧

下一篇:人教版五年级上册语文第6课《梅花魂》课文原文及知识点

相关阅读
最新更新