一、变量间的相关关系
1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.
2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.
二、两个变量的线性相关
1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.
当r>0时,表明两个变量正相关;
当r<0时,表明两个变量负相关.
r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.
三、解题方法
1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.
2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.
3.由相关系数r判断时|r|越趋近于1相关性越强.【同步练习题】
1.(2014银川模拟)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:
父亲身高x(cm)174176176176178;儿子身高y(cm)175175176177177,则y对x的线性回归方程为()
A.y^=x-1B.y^=x+1C.y^=88+12xD.y^=176
解析:因为x=174+176+176+176+1785=176,
y=175+175+176+177+1775=176,
又y对x的线性回归方程表示的直线恒过点(x,y),所以将(176,176)代入A、B、C、D中检验知选C.
答案:C
2.(2014衡阳联考)已知x与y之间的一组数据:
x0123
ym35.57
已求得关于y与x的线性回归方程y^=2.1x+0.85,则m的值为()
A.1B.0.85C.0.7D.0.5
解析:回归直线样本中心点(1.5,y),故y=4,m+3+5.5+7=16,得m=0.5.
答案:D
3.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:
优秀非优秀总计
甲班10b
乙班c30
总计105
已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是
()
A.列联表中c的值为30,b的值为35
B.列联表中c的值为15,b的值为50
C.根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”
D.根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”
解析:由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c=20,b=45,选项A、B错误.根据列联表中的数据,得到K2=105×10×30-20×45255×50×30×75≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”.
答案:C
4.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()
①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.
A.①B.①③C.③D.②
解析:①推断在100人吸烟的人中必有99人患有肺病,说法错误,排除A,B;③正确.
答案:C
5.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y^=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.
解析:解法一:特殊值法.
令x1=1得y^1=0.254+0.321.
令x2=1+1=2得y^2=2×0.254+0.321.
y^2-y^1=0.254.
解法二:由y^1=0.254x1+0.321,
y^2=0.254(x1+1)+0.321,则y^2-y^1=0.254.
答案:0.254