高二时孤身奋斗的阶段,是一个与寂寞为伍的阶段,是一个耐力、意志、自控力比拚的阶段。但它同时是一个厚实庄重的阶段。由此可见,高二是高中三年的关键,也是最难把握的一年。为了帮你把握这个重要阶段,高二频道整理了《高二数学必修三第一章重难点解析:古典概型》希望对你有帮助!!
古典概型的基本概念
1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件;
2.等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件;
3.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等;
4.古典概型的概率:如果一次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是
1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为nP(A)?m.n
知识点一:古典概型的基本概念
*例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析:
题意分析:本试题考查一次试验中用列举法列出所有基本事件的结果,而画树状图是列举法的基本方法.
解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利用树状图将它们之间的关系列出来.解答过程:解法一:所求的基本事件共有6个:
A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d}
解法二:树状图
解题后的思考:用树状图求解一次试验中的基本事件数比较直观、形象,可做到不重不漏.掌握列举法,学会用数形结合、分类讨论的思想解决概率的计算问题.
**例2:(1)向一个圆面内随机地投射一个点,如该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
(2)如图,某同学随机地向一靶心射击,这一试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么?
思路分析:
题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进行判定解决.解答过程:
答:(1)不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.
(2)不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.
解题后的思考:判定是不是古典概型,主要看两个方面,一是实验结果是不是有限的;另一个就是每个事件是不是等可能的.
***例3:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择正确的答案.假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?思路分析:
题意分析:本题考查古典概型概率的求解运算.
解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考生掌握了全部或部分考查内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可将此问题看作古典概型.
解答过程:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的.从而由古典概型的概率计算公式得:
P(答对\答对所包含的基本事件的个数1==0.25
基本事件的总数4解题后的思考:运用古典概型的概率公式求概率时,一定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发生的基本事件数,再借助于概率公式运算.小结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第一个关键点;理解一次试验中的所有基本事件数,和事件A发生的基本事件数,是解决概率问题的第二个关键点.
知识点二:古典概型的运用
*例4:同时掷两个骰子,计算:(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?
(4)为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析:
题意分析:本题考查了古典概型的基本运算问题.
解题思路:先分析“同时掷两个骰子的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运用举一反三的思想自行设问、解答.
解答过程:
解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示掷1号骰子的结果,第二个数表示掷2号骰子的结果.(可由列表法得到)1号骰子2号骰子1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰子的结果共有36种.(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1)
(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得
P(A)=A所包含的基本事件的个数41==
基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为
P(A)=A所包含的基本事件的个数2=
基本事件的总数21这就需要我们考察两种解法是否满足古典概型的要求了.可以通过展示两个不同的骰子所抛掷出来的点,感受第二种方法构造的基本事件不是等可能事件.
解题后的思考:考查同学们运用古典概型的概率计算公式时应注意验证所构造的基本事件是否满足古典概型的第二个条件.
对于同时抛掷的问题,我们要将骰子编号,因为这样就能反映出所有的情况,不至于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的.
**例5:从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.思路分析:
题意分析:本题考查的是不放回抽样的古典概型概率的运用
解题思路:首先注意到该题中取出的过程是有顺序的.同时明白一次试验指的是“不放回的,连续的取两次”.
先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利用概率公式求解.解答过程:
解法1:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.
用A表示“取出的两件中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因而P(A)=
42=63解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的方法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)=
23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但无论选择哪一种方式,观察的角度必须一致,否则会导致错误.
***例6:从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后放回,连续取两次,求取出的两件产品中恰有一件次品的概率.思路分析:
题意分析:本题考查放回抽样的概率问题.
解题思路:首先注意到该题中取出的过程是有顺序的.同时明白一次试验指的是“有放回的,连续的取两次”.
解答过程:每次取出一个后放回,连续取两次,其一切可能的结果组成的基本事件有9个,即
(a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1)
其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A表示“取出的两件中,恰好有一件次品”这一事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)=
4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同一个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.小结:
(1)古典概型概率的计算公式是非常重要的一个公式,要深刻体会古典概型的概念及其概率公式的运用,为我们学好概率奠定基础.
(2)体会求解不放回和有放回概率的题型.
知识点三:随机数产生的方法及随机模拟试验的步骤
**例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析:
题意分析:本题考查的是近似计算非古典概型的概率.
解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程:
我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产0到9之间的取整数值的随机数.
我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为一组.
例如:产生20组随机数:
812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458
这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考:
(1)利用计算机或计算器做随机模拟试验,可以解决非古典概型的概率的求解问题.(2)对于上述试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.
(3)随机函数(RANDBETWEEN)(a,b)产生从整数a到整数b的取整数值的随机数.
小结:能够简单的体会模拟试验求解非古典概型概率的方法和步骤.高考对这部分内容不作更多的要求,了解即可.5=25%.20
【同步练习题】
1.(2014惠州调研)一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为()
A.12;B.13;C.14;D.25
答案:A[把红球标记为红1.红2,白球标记为白1.白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1,红1,红1.红2,红2.红1,红2.红2,白1.白1,白1.白2,白2.白1,白2.白2,故所求概率为P=816=12.]
2.(2013江西高考)集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是
()
A.23B.12C.13D.16
答案:C[从A,B中各任取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为26=13.故选C.]
3.(2014宿州质检)一颗质地均匀的正方体骰子,其六个面上的点数分别为1.2.3.4.5.6,将这一颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为()
A.112B.118C.136D.7108
答案:A[基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.]
4.(2013安徽高考)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为
()
A.23B.25C.35D.910
答案:D[五人录用三人共有10种不同方式,分别为:{丙,丁,戊},{乙,丁,戊},{乙,丙,戊},{乙,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,乙,戊},{甲,乙,丁},{甲,乙,丙}.
其中含甲或乙的情况有9种,故选D.]
5.(理)(2014安徽示范高中联考)在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选取的概率相同,则选到两个顶点的距离大于3的概率为()
A.47B.37C.27D.314
答案:B[从8个顶点中任取两点有C28=28种取法,其线段长分别为1,2,3,5,10,13,14.①其中12条棱长度都小于等于3;②其中4条,棱长为1,2的面对角线长度为5<3;故长度大于3的有28-12-4=12,故两点距离大于3的概率为12C28=37,故选B.]