三角函数中的降次幂公式可降低三角函数指数幂。多项式各项的先后按照某一个字母的指数逐渐减少的顺序排列,叫做这一字母的降次。接下来分享三角函数降次公式及推导过程。
三角函数降次公式sin²α=(1-cos2α)/2
cos²α=(1+cos2α)/2
tan²α=(1-cos2α)/(1+cos2α)
三角函数降次公式推导过程三角函数的降幂公式是:
sin²α=(1-cos2α)/2
cos²α=(1+cos2α)/2
tan²α=(1-cos2α)/(1+cos2α)
运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式:
cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α
∴cos²α=(1+cos2α)/2
sin²α=(1-cos2α)/2
降幂公式,就是降低指数幂由2次变为1次的公式,可以减轻二次方的麻烦。
三角函数升幂公式sinα=2sin(a/2)cos(a/2)
cosα=2cos^2(a/2)-1=1-2sin^2(a/2)=cos^2(a/2)-in^2(a/2)
tanα=2tan(a/2)/[1-tan^2(a/2)]