导数是函数的局部性质。以下是小编整理的初中三角函数导数公式及推导过程,供参考。
三角函数的导数公式(sinx)=cosx
(cosx)=-sinx
(tanx)=sec²x
(cotx)=-csc²x
(secx) =tanx·secx
(cscx) =-cotx·cscx
(arcsinx)=1/√(1-x^2)
(arccosx)=-1/√(1-x^2)
(arctanx)=1/(1+x^2)
(arccotx)=-1/(1+x^2)
导数公式的推导过程设f(x)=sinx;(f(x+dx)-f(x))/dx=(sin(x+dx)-sinx)/dx=(sinxcosdx+sindxcosx-sinx)/dx,因为dx趋近于0,cosdx趋近于1,(f(x+dx)-f(x))/dx=sindxcosx/dx,根据重要极限sinx/x在x趋近于0时等于一,(f(x+dx)-f(x))/dx=cosx,即sinx的导函数为cosx。
同理可得,设f(x)=cos(f(x+dx)-f(x))/dx=(cos(x+dx)-cosx)/dx=(cosxcosdx-sinxsindx-sinx)/dx,因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=-sindxsinx/dx,根据重要极限sinx/x在x趋近于0时等于一(f(x+dx)-f(x))/dx=-sinx即cosx的导函数为-sinx。