首页 > 初中 > 三角函数公式推导过程

三角函数公式推导过程

时间:2020-09-29 22:10:35

  三角函数是数学中一种常见的关于角度的函数,对于很多同学来说有点难度,下面小编整理了三角函数公式推导过程,希望对大家有所帮助!

万能公式推导

  sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],

  (因为cos2(α)+sin2(α)=1)

  再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]

  然后用α/2代替α即可。

  同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

和差化积公式推导过程

  首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb

  同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2

  同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb

  所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb

  同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2

  这样,我们就得到了积化和差的公式:

  cosasinb=[sin(a+b)-sin(a-b)]/2

  sinasinb=-[cos(a+b)-cos(a-b)]/2

  有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式

  我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

  把a,b分别用x,y表示就可以得到和差化积的四个公式:

  sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]

  sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]

  cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]

三倍角公式推导

  tan3α=sin3α/cos3α

  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

  =[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα]

  上下同除以cos3(α),得:

  tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]

  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

  =2sinαcos2(α)+[1-2sin2(α)]sinα=2sinα-2sin3(α)+sinα-2sin3(α)

  =3sinα-4sin3(α)

  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

  =[2cos2(α)-1]cosα-2cosαsin2(α)

  =2cos3(α)-cosα+[2cosα-2cos3(α)]

  =4cos3(α)-3cosα

  即:

  sin3α=3sinα-4sin3(α)

  cos3α=4cos3(α)-3cosα

n倍角三角函数公式的推导

  利用欧拉公式推导

  事实上,对于任意n倍角三角函数公式还可以由欧拉公式推导:

  cosnA+isinnA=einA=e(iA)n=(cosA+isinA)n

  分别由左右两边实部和虚部相等,可以推导出n倍角余弦和正弦三角函数公式。以三倍角余弦公式为例,cos3A=C(30)cos3A-C(32)sin2AcosA=cos3A-3sin2AcosA=4cos3A-3cosA

  其余的任意n倍角三角函数公式(包括正弦、余弦、正切)则都可以由二项式定理相应地写出来。

上一篇:显微镜的放大倍数等于

下一篇:hard hardly区别

相关阅读
最新更新