勾股定理是中考数学的重点考查内容,对今后几何的学习也具有举足轻重的作用。下面小编整理了数学勾股定理公式,希望对你有所帮助。
勾股定理公式是什么勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是:a²+b²=c²。
勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理的逆定理:如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形,其中c为斜边。即直角三角形两直角边长的平方和等于斜边长的平方。
勾股数有哪些1.能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c为正整数时,称a,b,c为一组勾股数。
2.记住常见的勾股数可以提高解题速度,如3.4.5;6.8.10;5.12.13;7.24.25等。
3.用含字母的代数式表示n组勾股数:(n为正整数);(n为正整数);(mn,m,n为正整数)。
证明方法勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。主要有以下几种:
(1)拼图的方法
用拼图的方法验证勾股定理的思路是:
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
(2)青朱出入图
青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。
刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。
(3)欧几里得证法
在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在这个定理的证明中,我们需要如下四个辅助定理:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)
三角形面积是任一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。
证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。