首页 > 初中 > 线面平行的性质定理

线面平行的性质定理

时间:2020-09-24 22:52:17

  一条直线与一个平面无公共点(不相交),称为直线与平面平行。线面平行的性质定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

  线面平行的性质定理一

  平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

  已知:a∥b,a⊄α,b⊂α,求证:a∥α

  反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α

  ∵a∥b,∴A不在b上

  在α内过A作c∥b,则a∩c=A

  又∵a∥b,b∥c,∴a∥c,与a∩c=A矛盾。

  ∴假设不成立,a∥α

  线面平行的性质定理二

  平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

  已知:a⊥b,b⊥α,且a不在α上。求证:a∥α

  证明:设a与b的垂足为A,b与α的垂足为B。

  假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC

  ∵B∈α,C∈α,b⊥α

  ∴b⊥BC,即∠ABC=90°

  ∵a⊥b,即∠BAC=90°

  ∴在△ABC中,有两个内角为90°,这是不可能的事情。

  ∴假设不成立,a∥α。

上一篇:向量组线性相关的充要条件

下一篇:正逆反应速率怎么判断

相关阅读
最新更新