平面向量
戴氏航天学校老师总结加法与减法的代数运算:
(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);
两个向量共线的充要条件:
(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.
(2)若=(),b=()则‖b.
平面向量基本定理:
若e1.e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,使得=e1+e2
高二数学向量公式
1.单位向量:单位向量a0=向量a/|向量a|
2.P(x,y)那么向量OP=x向量i+y向量j
|向量OP|=根号(x平方+y平方)
3.P1(x1,y1)P2(x2,y2)
那么向量P1P2={x2-x1,y2-y1}
|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2
Cosα=向量a*向量b/|向量a|*|向量b|
(x1x2+y1y2)
根号(x1平方+y1平方)*根号(x2平方+y2平方)
5.空间向量:同上推论
(提示:向量a={x,y,z})
6.充要条件:
如果向量a⊥向量b
那么向量a*向量b=0
如果向量a//向量b
那么向量a*向量b=±|向量a|*|向量b|
或者x1/x2=y1/y2
7.|向量a±向量b|平方
=|向量a|平方+|向量b|平方±2向量a*向量b
=(向量a±向量b)平方