着眼于眼前,不要沉迷于玩乐,不要沉迷于学习进步没有别人大的痛苦中,进步是一个由量变到质变的过程,只有足够的量变才会有质变,沉迷于痛苦不会改变什么。高二频道为你整理了《高二数学必修三知识点总结》,希望对你有所帮助!
【一】
1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.
2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.
3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.
4.秦九韶算法是一种用于计算一元二次多项式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.
7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.
8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.
★重难点突破★
1.重点:理解辗转相除法与更相减损术的原理,会求两个数的公约数;理解秦九韶算法原理,会求一元多项式的值;会对一组数据按照一定的规则进行排序;理解进位制,能进行各种进位制之间的转化.
2.难点:秦九韶算法求一元多项式的值及各种进位制之间的转化.
3.重难点:理解辗转相除法与更相减损术、秦九韶算法原理、排序方法、进位制之间的转化方法.
【同步练习题】
1.在对16和12求公约数时,整个操作如下:(16,12)→(4,12)→(4,8)→(4,4),由此可以看出12和16的公约数是()
A、4B、12C、16D、8
2.下列各组关于公约数的说法中不正确的是()
A、16和12的公约数是4B、78和36的公约数是6
C、85和357的公约数是34D、105和315的公约数是105
【二】
一、简单随机抽样
1.简单随机抽样的概念:
设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
2.最常用的简单随机抽样方法有两种——抽签法和随机数法.
二、系统抽样的步骤
假设要从容量为N的总体中抽取容量为n的样本:
(1)先将总体的N个个体编号;
(2)确定分段间隔k,对编号进行分段,当是整数时,取k=;
(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);
(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.
三、分层抽样
1.分层抽样的概念:
在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.
2.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.
3.分层抽样时,每个个体被抽到的机会是均等的.
【同步练习题】
1.(2014·宁波月考)在简单随机抽样中,某一个个体被抽到的可能性()
A.与第几次抽样有关,第一次抽到的可能性
B.与第几次抽样有关,第一次抽到的可能性最小
C.与第几次抽样无关,每一次抽到的可能性相等
D.与第几次抽样无关,与样本容量无关
解析:由随机抽样的特点知某个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.
答案:C
2.(2013·湖南)某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()
A.抽签法C.系统抽样法B.随机数法D.分层抽样法
解析:从全体学生中抽取100名应用分层抽样法,按男、女学生所占的比例抽取.故选D.
答案:D
3.(2013·课标全国Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大在下面的抽样方法中,最合理的抽样方法是()
A.简单随机抽样C.按学段分层抽样B.按性别分层抽样D.系统抽样
解析:因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.
答案:C
4.(2013·陕西)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()
A.11C.13B.12D.14
解析:因为840∶42=20∶1,故编号在[481,720]内的人数为240÷20=12.
答案:B
5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()
A.7C.25B.15D.35
解析:由题意知青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人得样本容量为15.
答案:B