首页 > 高中 > 2020高二数学知识点总结

2020高二数学知识点总结

时间:2020-09-12 22:09:21

  世界一流潜能大师博恩崔西说:“潜意识的力量比表意识大三万倍”。追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。高二频道为你整理了《20xx高二数学知识点总结》,助你一路向前!

  【一】

  直线的倾斜角:

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  直线的斜率:

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

  ②过两点的直线的斜率公式。

  注意:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1.P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  直线方程:

  1.点斜式:y-y0=k(x-x0)

  (x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。

  2.斜截式:y=kx+b

  直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。

  3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

  如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。

  如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。

  如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。

  4.截距式x/a+y/b=1

  对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

  5.一般式;Ax+By+C=0

  将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。

  练习题:

  例:已知f(x+1)=x+1,f(x+1)的定义域为[0,2],求f(x)解析式和定义域

  设x+1=t,则;x=t-1,那么用t表示自变量f的函数为:(也就是把x=t-1代入f(x+1)=x+1中)

  f(t)=f(x+1)=(t-1)+1

  =t-2t+1+1

  =t-2t+2

  所以,f(t)=t-2t+2,则f(x)=x-2x+2

  或者用这样的方法——更直观:

  令f(x+1)=x+1中的x=x-1,这样就更直观了,把x=x-1代入f(x+1)=x+1,那么:

  f(x)=f[(x-1)+1]=(x-1)+1

  =x-2x+1+1

  =x-2x+2

  所以,f(x)=x-2x+2

  而f(x)与f(t)必须x与t的取值范围相同,才是相同的函数,

  由t=x+1,f(x+1)的定义域为[0,2],可知道:t∈[1,3]

  f(x)=x-2x+2的定义域为:x∈[1,3]

  综上所述,f(x)=x-2x+2(x∈[1,3]

  【二】

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

  ②过两点的直线的斜率公式:

  注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1.P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (3)直线方程

  ①点斜式:直线斜率k,且过点

  注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式:,直线斜率为k,直线在y轴上的截距为b

  ③两点式:()直线两点,

  ④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

  ⑤一般式:(A,B不全为0)

  ⑤一般式:(A,B不全为0)

  注意:○1各式的适用范围

  ○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

  (4)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线(是不全为0的常数)的直线系:(C为常数)

  (二)过定点的直线系

  (ⅰ)斜率为k的直线系:,直线过定点;

  (ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

  (5)两直线平行与垂直

  当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

  (6)两条直线的交点

  相交:交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合

  (7)两点间距离公式:设是平面直角坐标系中的两个点,则

  (8)点到直线距离公式:一点到直线的距离

  (9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。

  为大家带来了高一数学辅导资料:直线与方程知识点,希望大家能够利用这些内容,更多的高一数学资料,请查阅。

上一篇:人教版高一下册英语教案

下一篇:五年级上册语文《松鼠》课文原文及教学设计

相关阅读
最新更新