首页 > 初中 > 人教版七年级上册数学期末试卷及答案苏科版

人教版七年级上册数学期末试卷及答案苏科版

时间:2020-07-23 00:47:14
这篇关于人教版七年级上册数学期末试卷及答案苏科版的文章,是特地为大家整理的,希望对大家有所帮助!

  一、选择题(每小题2分,共16分)

  1.﹣2的倒数是()

  A.﹣2B.2C.﹣D.

  考点:倒数.

  专题:计算题.

  分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a=1(a≠0),就说a(a≠0)的倒数是.

  解答:解:﹣2的倒数是﹣,

  故选C.

  点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.

  2.在数﹣32.|﹣2.5|、﹣(﹣2)、(﹣3)3中,负数的个数是()

  A.1B.2C.3D.4

  考点:正数和负数.

  分析:根据乘方、相反数及绝对值,可化简各数,根据小于零的数是负数,可得答案.

  解答:解:﹣32=﹣9<0,|﹣2.5|=2.5>0,﹣(﹣2)=2>0,(﹣3)3=﹣27,

  故选:B.

  点评:本题考查了正数和负数,先化简各数,再判断正数和负数.

  3.一个点从数轴上的﹣3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()

  A.3B.﹣5C.﹣1D.﹣9

  考点:数轴.

  分析:根据数轴是以向右为正方向,故数的大小变化和平移变化之间的规律:左减右加,即可求解.

  解答:解:由题意得:向右移动2个单位长度可表示为+2,再向左移动4个单位长度可表示为﹣4,

  故该点为:﹣3+2﹣4=﹣5.

  故选B.

  点评:本题考查了数轴的知识,属于基础题,难度不大,注意数的大小变化和平移变化之间的规律:左减右加.

  4.下列说法中,正确的是()

  A.符号不同的两个数互为相反数

  B.两个有理数和一定大于每一个加数

  C.有理数分为正数和负数

  D.所有的有理数都能用数轴上的点来表示

  考点:有理数的加法;有理数;数轴;相反数.

  分析:A、根据有相反数的定义判断.B、利用有理数加法法则推断.C、按照有理数的分类判断:

  有理数D、根据有理数与数轴上的点的关系判断.

  解答:解:A、+2与﹣1符号不同,但不是互为相反数,错误;

  B、两个负有理数的和小于每一个加数,错误;

  C、有理数分为正有理数、负有理数和0,错误;

  D、所有的有理数都能用数轴上的点来表示,正确.

  故选D.

  点评:本题考查的都是平时做题时出现的易错点,应在做题过程中加深理解和记忆.

  5.若2x﹣5y=3,则4x﹣10y﹣3的值是()

  A.﹣3B.0C.3D.6

  考点:代数式求值.

  专题:计算题.

  分析:原式前两项提取2变形后,把已知等式代入计算即可求出值.

  解答:解:∵2x﹣5y=3,

  ∴原式=2(2x﹣5y)﹣3=6﹣3=3.

  故选C.

  点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.

  6.直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l的距离是()

  A.不超过4cmB.4cmC.6cmD.不少于6cm

  考点:点到直线的距离.

  分析:根据点到直线的距离是直线外的点与直线上垂足间线段的长度,垂线段最短,可得答案.

  解答:解:直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l的距离是小于或等于4,

  故选:A.

  点评:本题考查了点到直线的距离,利用了垂线段最短的性质.

  7.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个.设计划做x个“中国结”,可列方程()

  A.=B.=C.=D.=

  考点:由实际问题抽象出一元一次方程.

  分析:设计划做x个“中国结”,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.

  解答:解:设计划做x个“中国结”,

  由题意得,=.

  故选A.

  点评:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.

  8.如图,纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()

  A.4种B.5种C.6种D.7种

  考点:展开图折叠成几何体.

  分析:利用正方体的展开图即可解决问题,共四种.

  解答:解:如图所示:共四种.

  故选:A.

  点评:本题主要考查了正方体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.

  二、填空题(每小题2分,共20分)

  9.在﹣5.3和6.2之间所有整数之和为6.

  考点:有理数的加法;有理数大小比较.

  专题:计算题.

  分析:找出在﹣5.3和6.2之间所有整数,求出之和即可.

  解答:解:在﹣5.3和6.2之间所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,

  之和为﹣5﹣4﹣3﹣2﹣1+0+1+2+3+4+5+6=6,

  故答案为:6

  点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.

  10.京沪高铁全长约1318公里,将1318公里用科学记数法表示为1.318×103公里.

  考点:科学记数法—表示较大的数.

  分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

  解答:解:1318=1.318×103,

  故答案为:1.318×103.

  点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

  11.若关于x的方程2x+a=0的解为﹣3,则a的值为6.

  考点:一元一次方程的解.

  专题:计算题.

  分析:把x=﹣3代入方程计算即可求出a的值.

  解答:解:把x=﹣3代入方程得:﹣6+a=0,

  解得:a=6,

  故答案为:6

  点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.

  12.已知两个单项式﹣3a2bm与na2b的和为0,则m+n的值是4.

  考点:合并同类项.

  分析:根据合并同类项,可得方程组,根据解方程组,kedem、n的值,根据有理数的加法,可得答案.

  解答:解:由单项式﹣3a2bm与na2b的和为0,得

  .

  n+m=3+1=4,

  故答案为:4.

  点评:本题考查了合并同类项,合并同类项得出方程组是解题关键.

  13.固定一根木条至少需要两根铁钉,这是根据两点确定一条直线.

  考点:直线的性质:两点确定一条直线.

  分析:根据直线的性质:两点确定一条直线进行解答.

  解答:解:固定一根木条至少需要两根铁钉,这是根据:两点确定一条直线,

  故答案为:两点确定一条直线.

  点评:此题主要考查了直线的性质,关键是掌握两点确定一条直线.

  14.若∠A=68°,则∠A的余角是22°.

  考点:余角和补角.

  分析:∠A的余角为90°﹣∠A.

  解答:解:根据余角的定义得:

  ∠A的余角=90°﹣∠A=90°﹣68°=22°.

  故答案为22°.

  点评:本题考查了余角的定义;熟练掌握两个角的和为90°是关键

  15.在数轴上,与﹣3表示的点相距4个单位的点所对应的数是1或﹣7.

  考点:数轴.

  分析:根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.

  解答:解:分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;

  ②当点在表示﹣3的点的右边时,数为﹣3+4=1;

  故答案为:1或﹣7.

  点评:本题考查了数轴的应用,注意符合条件的有两种情况.

  16.若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是5,1.

  考点:有理数的减法;绝对值.

  分析:根据绝对值的性质.

  解答:解:∵|a|=3,|b|=2,且a+b>0,

  ∴a=3,b=2或a=3,b=﹣2;

  ∴a﹣b=1或a﹣b=5.

  则a﹣b的值是5,1.

  点评:此题应注意的是:正数和负数的绝对值都是正数.如:|a|=3,则a=±3.

  17.一个长方体的主视图与俯视图如图所示,则这个长方体的表面积是88.

  考点:由三视图判断几何体.

  分析:根据给出的长方体的主视图和俯视图可得,长方体的长是6,宽是2,高是4,进而可根据长方体的表面积公式求出其表面积.

  解答:解:由主视图可得长方体的长为6,高为4,

  由俯视图可得长方体的宽为2,

  则这个长方体的表面积是

  (6×2+6×4+4×2)×2

  =(12+24+8)×2

  =44×2

  =88.

  故这个长方体的表面积是88.

  故答案为:88.

  点评:考查由三视图判断几何体,长方体的表面积的求法,根据长方体的主视图和俯视图得到几何体的长、宽和高是解决本题的关键.

  18.如图,∠BOC与∠AOC互为补角,OD平分∠AOC,∠BOC=n°,则∠DOB=(90+)°.(用含n的代数式表示)

  考点:余角和补角;角平分线的定义.

  分析:先求出∠AOC=180°﹣n°,再求出∠COD,即可求出∠DOB.

  解答:解:∵∠BOC+∠AOD=180°,

  ∴∠AOC=180°﹣n°,

  ∵OD平分∠AOC,

  ∴∠COD=,

  ∴∠DOB=∠BOC+∠COD=n°+90°﹣=(90+)°.

  故答案为:90+

  点评:本题考查了补角和角平分线的定义;弄清各个角之间的关系是解决问题的关键.

  三、解答题(共64分)

  19.计算:40÷[(﹣2)4+3×(﹣2)].

  考点:有理数的混合运算.

  专题:计算题.

  分析:原式先计算中括号中的乘方及乘法运算,再计算除法运算即可得到结果.

  解答:解:原式=40÷(16﹣6)=40÷10=4.

  点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

  20.计算:[(﹣1)3+(﹣3)2]﹣[(﹣2)3﹣2×(﹣5)].

  考点:有理数的混合运算.

  分析:先算乘方和和乘法,再算括号里面的,最后算减法,由此顺序计算即可.

  解答:解:原式=(﹣1+9)﹣(﹣8+10)

  =8﹣2

  =6.

  点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.

  21.化简:3x+5(x2﹣x+3)﹣2(x2﹣x+3).

  考点:整式的加减.

  专题:计算题.

  分析:原式去括号合并即可得到结果.

  解答:解:原式=3x+5x2﹣5x+15﹣2x2+2x﹣6=3x2+9.

  点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.

  22.先化简,再求值:3mn﹣[6(mn﹣m2)﹣4(2mn﹣m2)],其中m=﹣2,n=.

  考点:整式的加减—化简求值.

  专题:计算题.

  分析:原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.

  解答:解:原式=3mn﹣6mn+6m2+8mn﹣4m2=2m2+5mn,

  当m=﹣2,n=时,原式=8﹣5=3.

  点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.

  23.解方程:3(x﹣1)﹣2(1﹣x)+5=0.

  考点:解一元一次方程.

  专题:计算题.

  分析:方程去括号,移项合并,把x系数化为1,即可求出解.

  解答:解:去括号得:3x﹣3﹣2+2x+5=0,

  移项合并得:5x=0,

  解得:x=0.

  点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.

  24.解方程:.

  考点:解一元一次方程.

  专题:计算题.

  分析:先把等式两边的项合并后再去分母得到不含分母的一元一次方程,然后移项求值即可.

  解答:解:原方程可转化为:=

  即=

  去分母得:3(x+1)=2(4﹣x)

  解得:x=1.

  点评:本题考查一元一次方程的解法注意在移项、去括号时要注意符号的变化.

  25.在如图所示的方格纸中,每一个正方形的面积为1,按要求画图,并回答问题.

  (1)将线段AB平移,使得点A与点C重合得到线段CD,画出线段CD;

  (2)连接AD、BC交于点O,并用符号语言描述AD与BC的位置关系;

  (3)连接AC、BD,并用符号语言描述AC与BD的位置关系.

  考点:作图-平移变换.

  分析:(1)根据图形平移的性质画出线段CD即可;

  (2)连接AD、BC交于点O,根据勾股定理即可得出结论;

  (3)连接AC、BD,根据平移的性质得出四边形ABDC是平形四边形,由此可得出结论.

  解答:解:(1)如图所示;

  (2)连接AD、BC交于点O,

  由图可知,BC⊥AD且OC=OB,OA=OD;

  (3)∵线段CD由AB平移而成,

  ∴CD∥AB,CD=AB,

  ∴四边形ABDC是平形四边形,

  ∴AC=BD且AC∥BD.

  点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.

  26.如图,将长方形纸片的一角折叠,使顶点A落在点A′处,折痕CB;再将长方形纸片的另一角折叠,使顶点D落在点D′处,D′在BA′的延长线上,折痕EB.

  (1)若∠ABC=65°,求∠DBE的度数;

  (2)若将点B沿AD方向滑动(不与A、D重合),∠CBE的大小发生变化吗?并说明理由.

  考点:角的计算;翻折变换(折叠问题).

  分析:(1)由折叠的性质可得∠A′BC=∠ABC=65°,∠DBE=∠D′BE,又因为∠A′BC+∠ABC+∠DBE+∠D′BE=180°从而可求得∠DBE;

  (2)根据题意,可得∠CBE=∠A′BC+∠D′BE=90°,故不会发生变化.

  解答:解:(1)由折叠的性质可得∠A′BC=∠ABC=65°,∠DBE=∠D′BE

  ∴∠DBE+∠D′BE=180°﹣65°﹣65°=50°,

  ∴∠DBE=25°;

  (2)∵∠A′BC=∠ABC,∠DBE=∠D′BE,∠A′BC+∠ABC+∠DBE+∠D′BE=180°,

  ∴∠A′BC+∠D′BE=90°,

  即∠CBE=90°,

  故∠CBE的大小不会发生变化.

  点评:本题主要考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了平角的定义.

  27.已知,点A、B、C、D四点在一条直线上,AB=6cm,DB=1cm,点C是线段AD的中点,请画出相应的示意图,并求出此时线段BC的长度.

  考点:两点间的距离.

  分析:分类讨论:点D在线段AB上,点D在线段AB的延长线上,根据线段的和差,可得AD的长,根据线段中点的性质,可得AC的长,再根据线段的和差,可得答案.

  解答:解:当点D在线段AB上时,如图:

  ,

  由线段的和差,得

  AD=AB﹣BD=6﹣1=5cm,

  由C是线段AD的中点,得

  AC=AD=×5=cm,

  由线段的和差,得

  BC=AB﹣AC=6﹣=cm;

  当点D在线段AB的延长线上时,如图:

  ,

  由线段的和差,得

  AD=AB+BD=6+1=7cm,

  由C是线段AD的中点,得

  AC=AD=×7=cm,

  由线段的和差,得

  BC=AB﹣AC=6﹣=cm.

  点评:本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键.

  28.如图,为一个无盖长方体盒子的展开图(重叠部分不计),设高为xcm,根据图中数据.

  (1)该长方体盒子的宽为(6﹣x)cm,长为(4+x)cm;(用含x的代数式表示)

  (2)若长比宽多2cm,求盒子的容积.

  考点:一元一次方程的应用;展开图折叠成几何体.

  专题:几何图形问题.

  分析:(1)根据图形即可求出这个长方体盒子的长和宽;

  (2)根据长方体的体积公式=长×宽×高,列式计算即可.

  解答:解:(1)长方体的高是xcm,宽是(6﹣x)cm,长是10﹣(6﹣x)=(4+x)cm;

  (2)由题意得(4+x)﹣(6﹣x)=2,

  解得x=2,

  所以长方体的高是2cm,宽是4cm,长是6cm;

  则盒子的容积为:6×4×2=48(cm3).

  故答案为(6﹣x)cm,(4+x)cm.

  点评:本题考查了一元一次方程的应用,正确理解无盖长方体的展开图,与原来长方体的之间的关系是解决本题的关键,长方体的容积=长×宽×高.

  29.目前节能灯在城市已基本普及,今年南京市面向农村地区推广,为相应号召,某商场计划购进甲、乙两种节能灯共1000只,这两种节能灯的进价、售价如下表:

  进价(元/只)售价(元/只)

  甲型2030

  乙型4060

  (1)如何进货,进货款恰好为28000元?

  (2)如何进货,能确保售完这1000只灯后,获得利润为15000元?

  考点:一元一次方程的应用.

  分析:(1)设商场购进甲种节能灯x只,则购进乙种节能灯(1000﹣x)只,根据两种节能灯的总价为28000元建立方程求出其解即可;

  (2)设商场购进甲种节能灯a只,则购进乙种节能灯(1000﹣a)只,根据售完这1000只灯后,获得利润为15000元建立方程求出其解即可.

  解答:解:(1)设商场购进甲种节能灯x只,则购进乙种节能灯(1000﹣x)只,由题意得

  20x+40(1000﹣x)=28000,

  解得:x=600.

  则购进乙种节能灯1000﹣600=400(只).

  答:购进甲种节能灯600只,购进乙种节能灯400只,进货款恰好为28000元;

  (2)设商场购进甲种节能灯a只,则购进乙种节能灯(1000﹣a)只,根据题意得

  (30﹣20)a+(60﹣40)(1000﹣a)=15000,

  解得a=500.

  则购进乙种节能灯1000﹣500=500(只).

  答:购进甲种节能灯500只,购进乙种节能灯500只,能确保售完这1000只灯后,获得利润为15000元.

  点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.

  30.已知点A、B在数轴上,点A表示的数为a,点B表示的数为b.

  (1)若a=7,b=3,则AB的长度为4;若a=4,b=﹣3,则AB的长度为7;若a=﹣4,b=﹣7,则AB的长度为3.

  (2)根据(1)的启发,若A在B的右侧,则AB的长度为a﹣b;(用含a,b的代数式表示),并说明理由.

  (3)根据以上探究,则AB的长度为a﹣b或b﹣a(用含a,b的代数式表示).

  考点:数轴;列代数式;两点间的距离.

  分析:(1)线段AB的长等于A点表示的数减去B点表示的数;

  (2)由(1)可知若A在B的右侧,则AB的长度是a﹣b;

  (3)由(1)(2)可得AB的长度应等于点A表示的数a与点B表示的数b的差表示,应是右边的数减去坐标左边的数,故可得答案.

  解答:解:(1)AB=7﹣3=4;4﹣(﹣3)=7;﹣4﹣(﹣7)=3;

  (2)AB=a﹣b

  (3)当点A在点B的右侧,则AB=a﹣b;当点A在点B的左侧,则AB=b﹣a.

  故答案为:(1)4,7,3;(2)a﹣b;(3)a﹣b或b﹣a.

  点评:本题主要考查了数轴及数轴上两点间的距离的计算方法,掌握数轴上两点间的距离的计算方法是关键.

上一篇:七年级上册期中数学试卷及答案

下一篇:四年级英语阅读理解练习题

相关阅读
最新更新