有学生问如何学好因式分解,下面小编为大家具体介绍下,供参考。
提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的。
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
运用公式法
①平方差公式:.a^2-b^2=(a+b)(a-b)
②完全平方公式:a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
换元法
有时在因式分解时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
掌握初中数学学习方法换个方式看例题
不少同学看书和看例题,往往看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
基础知识
要注意基础知识的掌握,不要过分关注成绩的高低。初一数学无论从概念还是技能都是初中数学的基础,“基础不牢、地动山摇”这句话就体现了初一数学的重要地位。这种基础性体现在有理数的四则混合运算、整式的计算、方程思想的体现、简单几何图形的规律总结等多方面。