首页 > 高中 > 二阶偏导数公式详解 性质及公式是什么

二阶偏导数公式详解 性质及公式是什么

时间:2021-05-08 22:45:09

  二阶偏导是比较难的知识点,下面是关于二阶偏导数的公式及性质等内容,让我们一起来看看吧。

二阶偏导数公式详解

  ∂z/∂x=[√(x²+y²)-x·2x/2√(x²+y²)]/(x²+y²)=y²/[(x²+y²)^(3/2)]

  ∂z/∂y=-x·2y/2√(x²+y²)^(3/2)]=-xy/[(x²+y²)^(3/2)]

  ∂²z/∂x²=-(3/2)y²·2x/[(x²+y²)^(5/2)]=-3xy²/[(x²+y²)^(5/2)]

  ∂²z/∂x∂y=[2y·[(x²+y²)^(3/2)-y²·(3/2)·[(x²+y²)^(1/2)2y]/[(x²+y²)³]

  当函数z=f(x,y)在(x0,y0)的两个偏导数fx(x0,y0)与fy(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。假如函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。

  此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,称为f(x,y)对x(对y)的偏导函数。简称偏导数。

  按偏导数的概念,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导办法与一元函数导数的求法是一样的。

  设有二元函数z=f(x,y),点(x0,y0)是其概念域D内一点。把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

  假如△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作fx(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数。

  把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。同样,把x固定在x0,让y有增量△y,假如极限存在那么此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数。记作fy(x0,y0)。

二阶偏导数的性质

  (1)假如一个函数f(x)在某个区间I上有f(x)(即二阶导数)0恒成立,那么对于区间I上的任意x,y,总有:

  f(x)+f(y)≥2f[(x+y)/2],假如总有f(x)0成立,那么上式的不等号反向。

  几何的直观解释:假如一个函数f(x)在某个区间I上有f(x)(即二阶导数)0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

  (2)判断函数极大值以及极小值。

  结合一阶、二阶导数能够求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

  (3)函数凹凸性。

  设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,

  1.若在(a,b)内f(x)0,则f(x)在[a,b]上的图形是凹的;

  2.若在(a,b)内f’‘(x)0,则f(x)在[a,b]上的图形是凸的。

上一篇:描写人物的作文300字范文欣赏

下一篇:平面镜成像是实像还是虚像怎么判断

相关阅读
最新更新