作为初中数学函数学习的最后一个函数,也是最难得一个,当属二次函数了,考试中也经常遇到。今天就带大家了解一下二次函数的解题技巧,希望可以帮到大家。
二次函数解题方法总结
1. 利用坐标系,建立数形结合意识
从近几年各地中考二次函数综合题来看,大部分都是与坐标系有关的,它的特点是建立点与坐标之间的对应关系。我们可以用代数方法研究几何图形的性质;还可以借助几何图形直观得到某些代数问题的答案。
2. 利用直线或抛物线,掌握函数与方程
直线与抛物线是一次函数与二次函数所表示的图像,是初中数学两类重要函数。因此,无论是求它的解析式还是研究它的性质,都离不开函数与方程。
3. 条件或结论的多变,注意分类讨论
分类讨论,是检测同学们思维的准确性和严密性,涉及这种类型的试题,一般是通过条件的多变性或结论的不确定性来进行考查。有些问题,如果不注意对各种情况进行分类讨论,就有可能造成错解或漏解,近几年,用分类讨论解题已成为新的热点。
4. 综合多个知识点,灵活运用等价转换
初中数学中的转换思想大体包括由已知向未知的转换,由复杂向简单的转换,而解答二次函数综合题,要注意的是不同知识点之间的联系与转换。
初中二次函数解题技巧
1.平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。
2.轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。
二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
3.旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为180°的图像变换,此类旋转,不会改变二次函数的图像形状,开口方向相反,因此a值会为原来的相反数,但顶点坐标不变,故很容易求其解析式。