反三角函数是一种基本初等函数。接下来小编给大家总结了有关反正弦三角函数的公式,一起看一下具体内容,供参考。
反正弦三角函数计算公式(1)arcsinx+arcsiny
arcsinx+arcsiny=arcsin(x√(1-y2)+y√(1-x2)),xy≤0或x2+y2≤1。
arcsinx+arcsiny=π-arcsin(x√(1-y2)+y√(1-x2)),x>0且y>0且x2+y2>1。
arcsinx+arcsiny=-π-arcsin(x√(1-y2)+y√(1-x2)),x<0且y<0且x2+y2>1。
(2)arcsinx-arcsiny
arcsinx-arcsiny=arcsin(x√(1-y2)-y√(1-x2)),xy≤0或x2+y2≤1。
arcsinx-arcsiny=π-arcsin(x√(1-y2)-y√(1-x2)),x>0且y<0且x2+y2>1。
arcsinx-arcsiny=-π-arcsin(x√(1-y2)+y√(1-x2)),x<0且y>0且x2+y2>1。
反余弦三角函数计算公式(1)arccosx+arccosy
arccosx+arccosy=arccos(xy-√(1-x2)√(1-y2)),x+y≥0。
arccosx+arccosy=2π-arccos(xy-√(1-x2)√(1-y2)),x+y<0。
(2)arccosx-arccosy
arccosx-arccosy=-arccos(xy+√(1-x2)√(1-y2)),x≥y。
arccosx-arccosy=arccos(xy+√(1-x2)√(1-y2)),x<y。
反正切三角函数计算公式(1)arctanx+arctany
arctanx+arctany=arctan(x+y)/(1-xy),xy<1。
arctanx+arctany=π+arctan(x+y)/(1-xy),x>0,xy>1。
arctanx+arctany=-π+arctan(x+y)/(1-xy),x<0,xy>1。
(2)arctanx-arctany
arctanx-arctany=arctan(x-y)/(1-xy),xy>-1。
arctanx-arctany=π+arctan(x-y)/(1-xy),x>0,xy<-1。
arctanx-arctany=-π+arctan(x-y)/(1-xy),x<0,xy<-1。
反三角函数的余角关系公式arcsin(x)+arccos(x)=π/2
arctan(x)+arccot(x)=π/2
arcsec(x)+arccsc(x)=π/2
反三角函数的负数关系公式arcsin(-x)=-arcsin(x)
arccos(-x)=π-arccos(x)
arctan(-x)=-arctan(x)
arccot(-x)=π-arccot(x)
arcsec(-x)=π-arcsec(x)
arcsec(-x)=-arcsec(x)
反三角函数的倒数关系公式arcsin(1/x)=arccsc(x)
arccos(1/x)=arcsec(x)
arctan(1/x)=arccot(x)=π/2-arctan(x)(x0)
arccot(1/x)=arccot(x)=π/2-arccot(x)(x0)
arccot(1/x)=arctan(x)+π=3π/2-arccot(x)(x0)
arcsec(1/x)=arccos(x)
arccsc(1/x)=arcsin(x)