首页 > 初中 > 三角函数的诱导公式怎么用

三角函数的诱导公式怎么用

时间:2020-09-29 22:27:18
三角函数的诱导公式的用法

  1.公式一到公式五函数名未改变,公式六函数名发生改变。

  2.公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。

  3.对于kπ/2±α(k∈Z)的三角函数值:

  ①当k是偶数时,得到α的同名函数值,即函数名不改变;

  ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)

诱导公式的作用有什么

  三角函数诱导公式的作用:可以将任意角的三角函数转化为锐角三角函数。例如:

  1.sin390°=sin(360°+30°)=sin30°=1/2。

  2.tan225°=tan(180°+45°)=tan45°=1。

  3.cos150°=cos(90°+60°)=sin60°=√3/2。

  记住六个三角函数在四个象限里的符号.六个三角函数分为三组:①sin,csc;②cos,sec;③tan,cot;每一组内的两个函数无论在哪个象限,它们的符号总是相同的.然后按上面的顺序记住:第一象限:+++;第二象限:+--;第三象限:--+;第四象限:-+-。

常用的诱导公式

  sin(α+k·360°)=sinα(k∈Z)

  cos(α+k·360°)=cosα(k∈Z)

  tan(α+k·360°)=tanα(k∈Z)

  cot(α+k·360°)=cotα(k∈Z)

  sec(α+k·360°)=secα(k∈Z)

  csc(α+k·360°)=cscα(k∈Z)

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  sec(π+α)=-secα

  csc(π+α)=-cscα

上一篇:俄罗斯地形以什么为主

下一篇:氧化还原反应与置换反应的关系

相关阅读
最新更新