方向向量是一个数学概念,空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。那么方向向量怎么求呢?
方向向量怎么求空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。方向向量的求解所以只要给定直线,便可构造两个方向向量(以原点为起点)。
即已知直线l:ax+by+c=0,则直线l的方向向量为s=(-b,a)或(b,-a)。
若直线l的斜率为k,则l的一个方向向量为 s=(1,k)若a(x1,y1),b(x2,y2),则ab所在直线的一个方向向量s=(x2-x1,y2-y1)。
向量的相关概念有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作 或AB;
向量的模:有向线段AB的长度叫做向量的模,记作|AB|;
零向量:长度等于0的向量叫做零向量,记作 或0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在向量“0”上加箭头,以免混淆);
相等向量:长度相等且方向相同的向量叫做相等向量;
平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,-零向量与任意向量平行,即0//a;
单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。
相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。