勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。接下来分享初中勾股定理公式大全,供参考。
勾股定理的公式基本公式
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a2+b2=c2。
完全公式
a=m,b=(m^2/k-k)/2,c=(m^2/k+k)/2①
其中m≥3
(1)当m确定为任意一个≥3的奇数时,k={1,m^2的所有小于m的因子}
(2)当m确定为任意一个≥4的偶数时,k={m^2/2的所有小于m的偶数因子}
常用公式
(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。
(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2n+1(n是正整数)。
(3)(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)。
(4)m^2-n^2,2mn,m^2+n^2(m、n均是正整数,mn)。
勾股定理的逆定理如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a^2+b^2与较长边的平方c^2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若a^2+b^2c^2时,以a,b,c为三边的三角形是钝角三角形;若a^2+b^2c^2时,以a,b,c为三边的三角形是锐角三角形;
②定理中a,b,c及a^2+b^2=c^2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a^2+b^2=c^2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边.
③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形