数学到去年级了,开始慢慢的难起来了,大可以学习好吗,小编今天就给大家分享一下五年级数学,欢迎大家学习
五年级数学公倍数和公因数知识点
1.一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2.几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。
3.两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。
4.两个素数的积一定是合数。举例:35=15,15是合数。
5.两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。
6.求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5
素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1
一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1
相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1
特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9.4和15.10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
五年级数学质数与合数重点
质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=,其中a1.a2.a3an都是合数N的质因数,且a1
求约数个数的公式:P=(r1+1)(r2+1)(r3+1)(rn+1)
互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
五年级数学因数和倍数知识点阅读
1.因数和倍数的意义:如果ab=c(a、b、c都不为0的整数),那么a、b就是c的因数,c就是a、b的倍数。
2.数与倍数的关系:因数和倍数是两个不同的该概念,但又是一对相互依存的概念,不能单独存在。
3.找一个数的因数的方法:(1)列乘法算式:根据因数的意义,有序地写出两个乘积是此数的所有乘法算式,乘法算式中每个因数就是该数的因能数。(2)列除法算式:用此数除以大于1等于1而小于等它本身的整数,所得的商是整数而无余数,这些除数和商都是该数的因数。
4.找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与非零自然数相乘,所得之数就是这个数的倍数。
2.3.5的倍数的特征 1.2的倍数的特征:个位上是0、2.4.6.8的数都是2的倍数。
2.奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
3.奇数、偶数的运算性质:奇数奇数=偶数,偶数偶数=偶数,奇数偶数=奇数(大减小),奇数奇数=奇数,奇数偶数=偶数,偶数偶数=偶数。
4.5的倍数的特征:个位上是0或5的数都是5的倍数.
5.3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
质数和合数 1.质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
2.质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。
3.分解质因数:把一个合数用质数相乘的形式表是出来,就是分解质因数。
4.分解质因数的方法:(1):树枝图式分解法;(2)短除法分解。