有两点 A(x1,y1) B(x2,y2) ,则它们的中点P的坐标为((x1+x2)/2,(y1+y2)/2)。
中点坐标公式有两点 A(x1,y1) B(x2,y2) ,则它们的中点P的坐标为((x1+x2)/2,(y1+y2)/2)。任意一点(x,y)关于(a, b)的对称点为 (2a-x,2b-y);则(2a-x,2b-y)也在此函数上。有 f(2a-x)= 2b-y 移项,有y=2b- f(2a-x)。
推导过程证明:在平面直角坐标系xoy中,
假设点A(x1,y1),点B(x2,y2),
线段AB的中点为点M(x,y);
因为|AM|=|MB|,而且向量AM和向量MB是同向的,
所以向量AM=向量MB,即(x-x1,y-y1)=(x2-x,y2-y),
所以x-x1=x2-x①,y-y1=y2-y②;
由①可得2x=x1+x2,所以x=(x1+x2)/2;
由②可得2y=y1+y2,所以y=(y1+y2)/2;
综上所述,点M的坐标为((x1+x2)/2,(y1+y2)/2)。