第二章:整式的加减
1.单项式:;单独的一个数或一个字母也是单项式
2.系数:;
3.单项式的次数:;
4.多项式:;
叫做多项式的项;的项叫做常数项。
5.多项式的次数:;
6.整式:;
7.同类项:;
8.把多项式中的同类项合并成一项,叫做合并同类项;
合并同类项后,所得项的系数是合并同前各同类项的系数的和,且字母部分不变。
9.去括号:(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反
10.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项
第三章:一次方程(组)
一、方程的有关概念
1.方程的概念:
(1)含有未知数的等式叫方程。
(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程。
2.等式的基本性质:
(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。若a=b,则a+c=b+c或a–c=b–c。
(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。若a=b,则ac=bc或
二、解方程
1.移项的有关概念:
把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项。这个法则是根据等式的性质1推出来的,是解方程的依据。把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号。
2.解一元一次方程的步骤:
解一元一次方程的步骤
主要依据
1.去分母
等式的性质2
2.去括号
去括号法则、乘法分配律
3.移项
等式的性质1
4.合并同类项
合并同类项法则
5.系数化为1
等式的性质2
6.检验
3.二元一次方程组
(1)将二元一次方程用含有一个未知数的代数式表示另一个未知数;
(2)解二元一次方程组的指导思想是转化的思想;
(3)解二元一次方程组的方法有:加减消元法;代入消元法;
二、列方程解应用题
1.列方程解应用题的一般步骤:
(1)将实际问题抽象成数学问题;
(2)分析问题中的已知量和未知量,找出等量关系;
(3)设未知数,列出方程;
(4)解方程;
(5)检验并作答。
2.一些实际问题中的规律和等量关系:
(1)几种常用的面积公式:
长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积;
梯形面积公式:S=,a,b为上下底边长,h为梯形的高,S为梯形面积;
圆形的面积公式:,r为圆的半径,S为圆的面积;
三角形面积公式:,a为三角形的一边长,h为这一边上的高,S为三角形的面积。
(2)几种常用的周长公式:
长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长。
正方形的周长:L=4a,a为正方形的边长,L为周长。
圆:L=2πr,r为半径,L为周长。