画受力分析图,物体在平面上受重力,所以要将物体提到一定高度最少要克服重力;而在斜面上,物体受沿斜面的拉力,反方向的摩擦力,还有重力,还有垂直于斜面的支持力,由正交分解得,拉力小于重力,所以省力。
斜面原理
斜面原理表明,给定斜面高度,则在斜面上的物体,其重量的影响与斜面长度成反比。
三棱柱ABC的底面AC与水平面相平行,两个斜面AB、BC的长度比率为2:1,悬挂于三棱柱的链子,其串连的14粒圆珠的大小、重量都相同,所有邻近圆珠之间的距离都一样。假设在斜面BC上有2粒圆珠E、F,则在斜面AB上有4粒圆珠P、Q、R、D。斯特芬推导出,对于在两个斜面AB、BC上的重物,达成静力平衡的条件。
由于对称性,在底面AC下方的8粒圆珠,对于链子在S、V两点的影响相同。所以,假若在斜面AB上的4粒圆珠的影响大于在斜面BC上的2粒圆珠的影响,则链子会朝着滑下斜面AB的方向(逆时钟方向)转动;假若小于,则会朝着滑下斜面BC的方向(顺时钟方向)转动。
这样,会产生永恒运动,链子会不停地朝某方向转动。但斯特芬认为,这是荒谬无比、绝对不可能发生的现象,因此,这链子必定呈静止状态。由于对称性,即使将链子在S、V两点剪断,除去底面AC下方的8粒圆珠,也不会改变剩余的链子的静止状态。所以,在两个斜面AB、BC上的重物,其重量与斜面长度成反比,才可达成静力平衡。