圆的通径就是过焦点垂直于长轴的直线与椭圆相交所得的线段长度,所以把椭圆方程中的x代成c,就可得:就可得y1=b²/a,y2=-b^/a,所以通径的长度就是y1-y2=2b²/a,其中b²表示b的平方。
推导过程
证明:
设椭圆x²/a²+y²/b²=1,焦点(c,0),(-c,0),且c²=a²-b²
令x=c或-c,c²/a²+y²/b²=1
∴y²/b²=1-c²/a²=1-(a²-b²)/a²=b²/a²
∴y²=b²×b²/a²,y=b²/a或-b²/a
即通径两端点为(c,b²/a)(c,-b²/a),或者(-c,b²/a)(-c,-b²/a)
∴通径长=b²/a-(-b²/a)=2b²/a