log以a为底b的对数——loga(b)=logc(b)/logc(a)也可以写lg(b)]/lg(a)也就是log以10为底b的对数。换底公式是高中数学常用对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算。
对数在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。如果a的x次方等于N(a0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
对数符号以a为底N的对数记作logan。对数符号log出自拉丁文logarithm,最早由意大利数学家卡瓦列里(Cavalieri)所使用。20世纪初,形成了对数的现代表示。为了使用方便,人们逐渐把以10为底的常用对数及以无理数e为底的自然对数分别记作lgN和lnN。