所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简,何时配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方,有时也将其称为“凑配法”。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)²=a²+2ab+b²,将这个公式灵活运用,可得到各种基本配方形式,如:a²+b²=(a+b)²-2ab=(a-b)²+2ab.
因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,中学课本上介绍有提取公因式法、公式法、分组分解法、十字相乘法等都是因式分解的常用手段。
面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
运用面积法常用到的定理有:
(1)等底等高的两个三角形面积相等;
(2)等底(或等高)的两三角形面积之比等于其高(或底)之比;
(3)在两个三角形中,若两边对应相等,其夹角互补,则这两个三角形面积相等。
(4)若在同一线段的同侧有底边相等面积相等的两个三角形,则连结两个三角形的顶点的直线与底边平行。
以上就是小编为大家总结的初中数学常见大题解题技巧,学霸高分的诀窍,仅供参考,希望对大家有所帮助。